
Chapter 10

Searching

10.1 Sequential Search

A simple algorithm that search for a specific item inside a list. It operates
looping on each element O(n) until a match occurs or the end is reached.

1) algorithm SequentialSearch(list, item)
2) Pre: list 6= ∅
3) Post: return index of item if found, otherwise −1
4) index ← 0
5) while index < list.Count and list[index] 6= item
6) index ← index + 1
7) end while
8) if index < list.Count and list[index] = item
9) return index
10) end if
11) return −1
12) end SequentialSearch

10.2 Probability Search

Probability search is a statistical sequential searching algorithm. In addition to
searching for an item, it takes into account its frequency by swapping it with
it’s predecessor in the list. The algorithm complexity still remains at O(n) but
in a non-uniform items search the more frequent items are in the first positions,
reducing list scanning time.

Figure 10.1 shows the resulting state of a list after searching for two items,
notice how the searched items have had their search probability increased after
each search operation respectively.

76



CHAPTER 10. SEARCHING 77

Figure 10.1: a) Search(12), b) Search(101)

1) algorithm ProbabilitySearch(list, item)
2) Pre: list 6= ∅
3) Post: a boolean indicating where the item is found or not;

in the former case swap founded item with its predecessor
4) index ← 0
5) while index < list.Count and list[index] 6= item
6) index ← index + 1
7) end while
8) if index ≥ list.Count or list[index] 6= item
9) return false
10) end if
11) if index > 0
12) Swap(list[index], list[index− 1])
13) end if
14) return true
15) end ProbabilitySearch

10.3 Summary

In this chapter we have presented a few novel searching algorithms. We have
presented more efficient searching algorithms earlier on, like for instance the
logarithmic searching algorithm that AVL and BST tree’s use (defined in §3.2).
We decided not to cover a searching algorithm known as binary chop (another
name for binary search, binary chop usually refers to its array counterpart) as



CHAPTER 10. SEARCHING 78

the reader has already seen such an algorithm in §3.
Searching algorithms and their efficiency largely depends on the underlying

data structure being used to store the data. For instance it is quicker to deter-
mine whether an item is in a hash table than it is an array, similarly it is quicker
to search a BST than it is a linked list. If you are going to search for data fairly
often then we strongly advise that you sit down and research the data structures
available to you. In most cases using a list or any other primarily linear data
structure is down to lack of knowledge. Model your data and then research the
data structures that best fit your scenario.


